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The use of a non-staggered computational grid for the numerical solutions of the incom- 
pressible flow equations has many advantages over the use of a staggered grid. A penalty, 
however, is inherent in the finite-difference approximations of the governing equations on 
non-staggered grids. In the primitive-variable solutions, the penalty is that the discrete con- 
tinuity equation does not converge to machine accuracy. Rather it converges to a source term 
which is proportional to the fourth-order derivative of the pressure, the time increment, and 
the square of the grid spacing. An approach which minimizes the error in the discrete 
continuity equation is developed. Numerical results obtained for the driven cavity problem 
confirm the analytical developments. c 1991 Academic Press, Inc 

There are two common formulations for the numerical solution of the incom- 
pressible Navier-Stokes equations in primitive variables; the artificial com- 
pressibility and the pressure Poisson equation methods. In both methods, the 
velocity field is calculated from the time dependent momentum equation using time 
marching techniques, while each method employs a different equation to compute 
the pressure. 

In the artificial compressibility method, a time derivative of the pressure is added 
to the continuity equation [l] and the incompressible field is treated as com- 
pressible during the transient calculations. On the other hand, the pressure Poisson 
method [2] replaces the continuity equation with a second-order elliptic Poisson 
equation for the pressure. 

An important issue in the numerical solutions of the primitive variable formula- 
tions is the satisfaction of the discrete continuity equation when staggered or non- 
staggered computational grids are used. It has been shown for both methods, the 
artificial compressibility and the pressure Poisson, that the discrete continuity 
equation is satisfied to machine zero on staggered grids [2, 3). Unfortunately, this 
is not true on non-staggered grids. The artificial compressibility method requires 
the explicit addition of a fourth-order artificial dissipation term to the discrete 
continuity equation to eliminate odd-even decoupling in the pressure field. The 
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odd-even decoupling is caused by central second-order finite-difference approxima- 
tions of the first-order continuity equation. Therefore the discrete divergence of the 
velocity field is not driven to machine zero but rather to a term proportional to the 
fourth-order derivative of the pressure [4]. Similarly, the pressure Poisson formula- 
tion may not satisfy the discrete continuity equation exactly on non-staggered grids. 
This phenomenon can be explained by investigating the discrete pressure equation 
which can be obtained by: 

1. Discretization of the continuum pressure Poisson equation using central 
second-order accurate formulas [S, 61. 

2. Direct derivation from the discrete divergence of the discrete momentum 
equation [2]. 

Although the above approaches lead to the same discrete pressure equation on a 
staggered grid, they do not give the same equation on non-staggered grids. 

Careful examination of the two forms of the discrete pressure equation shows 
that the direct derivation of the discrete pressure equation satisfies the discrete con- 
tinuity exactly but fails to give a smooth pressure field. The oscillatory behavior of 
the pressure is caused by the odd-even decoupling inherent in the resulting discrete 
pressure equation. On the other hand, the first approach gives a smooth pressure 
field, but has two major problems: 

1. The compatibility condition of the Poisson Neumann problem is not 
automatically satisfied. 

2. The discrete continuity equation is not exactly satisfied. 

The first problem has been resolved in Refs. [S-9]. The use of the consistent tinite- 
difference method of Abdallah [S, 63 satisfies the compatibility condition exactly on 
non-staggered grids. While in Refs. [7-91 a uniform correction for the source term 
of the pressure Poisson equation is employed in order to satisfy the compatability 
condition. The second problem is the subject of this paper. More specifically, we 
discuss the reasons which prevent the discrete divergence of the velocity from going 
to zero and we estimate the error in the discrete continuity equation. Finally, we 
propose an optimum discrete form for the pressure equation which minimizes the 
error in the continuity equation and provides a smooth pressure field. 

MATHEMATICAL FORMULATION 

Governing Equations 

The equations which govern the laminar, incompressible flow of a Newtonian 
fluid are given in Cartesian coordinates as follows: 

Continuity, 

“+aY,() 
ax ay (1) 
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x-Momentum, 

y-Momentum, 

!k+u!!+a!.Y= 22 
ay ay++-(g+$)> 

(2) 

where u and u are the velocity components in the x- and y-directions, respectively, 
P is the static pressure divided by the density, and Re is the Reynolds number. 

The main difficulty associated with the solution of the system (l)-(3) is the con- 
tinuity equation (1). Equation (1) is a constraint which the velocity field has to 
satisfy at any instant in time and not an evolution equation of the type (2) or (3). 
Also, Eq. (1) does not involve the pressure, which appears only in the momentum 
equations (2) and (3). 

A numerical solution for Eqs. (l)-(3) must incorporate a procedure for taking 
into account the important interaction between the pressure and velocity fields. In 
order to achieve this coupling between the pressure and the velocity fields, the 
continuity equation (1) must be replaced by an equation which involves both 
pressure and velocity and at the same time guarantees the satisfaction of the 
incompressibility constraint. 

The Pressure Poisson Formulation 

In the pressure Poisson formulation a second-order elliptic equation, of Poisson 
type for the pressure, is derived by applying the divergence operator to the 
momentum equation: 

where 

D=a”+a”, 
ax ay 

(4b) 

Up to this point the continuity equation (1) has not been used in the derivation of 
Eq. (4). In other words the solution of Eq. (4) for the pressure, along with Eq. (2) 
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and (3) for the velocity field, does not guarantee in any way that the computed 
velocity field will be divergence-free. 

To satisfy the continuity equation (l), the time-dependent term in the right-hand 
side of Eq. (4) is discretized in time as 

aD D(t+At)-D(t) -= 
at At ’ 

(5) 

where At is the time increment. As suggested by Harlow and Welch [2], the 
dilation at the (t + At) time level is set to zero in order to enforce the continuity 
equation, while the dilation at the (t) time level is retained. Thus, Eq. (5) reduces 
to 

aD D(t) --- 
at- At’ 

(6) 

It is important to stress here that the same temporal discretization must be used for 
the unsteady terms in the momentum equations (2) and (3). By incorporating 
Eq. (6) into Eq. (4), we obtain 

(7) 

Equation (7) is the pressure Poisson equation which has been used by researchers 
to resolve incompressible flows on staggered [2] and non-staggered grids [S-11]. 

i-2 i 

FIG. 1. Finite-difference grid. 

i+2 
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To see how the solution of Eq. (7) guarantees the satisfaction of the continuity 
equation at convergence we should compare Eq. (4) with Eq. (7). This comparison 
reveals that the pressure Poisson equation (7) can be viewed as an evolution equa- 
tion for the dilation D, namely Eq. (6). Moreover, the solution of Eq. (6) is an 
exponential decay in time as 

D(r) = DOe-‘!A’, (8) 

where Do is the initial dilation. Thus, the solution of Eq. (7) for the pressure, along 
with Eqs. (2) and (3) for u and v, guarantees that the initial dilation D,, will decay 
to zero as t + 00 (i.e., as a steady state is approached). We will not pursue further 
the analysis of the relation between the pressure and the continuity equations in 
continuum form-a subject which has been investigated by Gresho and Sani [lo]. 

Discretization of the Governing Equations 

Using the Euler-explicit temporal discretization scheme for the time derivatives 
and central second-order accurate finite difference formulas for the spatial 
derivatives, the system of the governing equations (7), (2), and (3) can be dis- 
cretized as (see Fig. 1) 

P:‘, ,,, - 2PT, + P:‘- , 
Ax= 

,,+P:j+,-2Pyi+P;j~, 

Ay2 

where 

u;;‘=~;,-& 
PY,, j-Pp-, 

‘2Ax “+t;, 
> 

v;;‘=~;~-At ‘:j+lMp:j-l 

DAY 

(9) 

(10) 

(12b) 

The first- and second-order operators (6,, 6,) and (S,,, 6,.) are the central second- 
order finite-difference approximations for the (a/ax, 8/8y) and (3*/8x*, 8*/8y2) 
derivatives, respectively. The pressure equation was discretized according to the 
consistent finite difference method proposed by Abdallah [6]. 

Equation (9) is solved for Pyj, given uyj and vyj, and then the velocity field is 
updated using Eq. (10) and (11). At this point of our discussion, it seems important 
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to pose the following question: Does the solution of Eqs. (9) (lo), and (11) guaran- 
tee that the computed velocity field will be divergence-free in the discrete computa- 
tional space? In order to answer this question, we should first understand how the 
discrete continuity equation is modeled in the pressure equation (9). This point can 
be made very clear if we look at the derivation of Eq. (9) from a different point of 
view. Let us consider, for example, the following discrete approximation of the 
continuity equation (1) which we seek to satisfy at the time level t + At (n + 1): 

u”” -un+’ 
I+ 1/2,J I- 1j2.J. v~~~,/2-v;+11/2 

Ax 
+ J = 0. 

AY 
(13) 

The pressure Poisson equation (9) can be derived from Eq. (13) if we employ the 
x- and y-momentum equations at the nodes (ik l/2, j) and (i, j, l/2). Expressions 
for u:C$~,~ and ~;i’+‘,,~ are obtained as follows: - 

u;+‘;,,, i = u;, I,2, I - At pi* ‘;;, “J + ti, ,,2, J)n 

pi,j* I - pz,~ 

> 

n 

V;~~~/2=V;j+1/2-At 

AY 
+‘1r,i+1/2 

Substituting Eqs. (14a) and (14b) into Eq. (13) we obtain 

1 pi+ 1,~ - p,j 
n dx Ax + 5i+ l/&i - 

> ( 

pi,j-pipl,~ 

Ax + ti- l/2. j >I 
+i 

[( 

pi,j+l -pi,j 

I( 

',,J - p,jp I )I 
n 

AY AY 
+ rll, j+ l/2 - Ax + Vi, j- l/2 

1 
=z 

ui+ 1/2,J - ui- l/2, j ‘,,J+ 112 - ';,I- 112 1 
n 

Ax 
+ 

AY . 

(14a) 

(14b) 

(15) 

It takes some simple algebra to show that Eq. (15) is identical to Eq. (9). Notice, 
that the right-hand side of Eq. (15) is the divergence of the velocity field while its 
left-hand side consists of the x- and y-components of the steady state form of the 
momentum equation computed at the nodes (if l/2, j) and (i, j + l/2), respectively. 
Thus, if the momentum equations are driven to steady state at these nodes, the left- 
hand side of Eq. (15) will eventually approach zero and so does the divergence of 
the velocity field. Unfortunately, on a non-staggered grid, the momentum equations 
are not driven to zero at (i _+ l/2, j) and (i, j f l/2) nodes but they are at the (i, j) 
nodes (see Eqs. (10) and (11)). This inconsistency between the discrete momentum 
and continuity equations prevents the discrete divergence of the velocity (right- 
hand side of Eq. (15)) from approaching zero. This observation, raises the following 
question: what is the size of the mass source (error in D) which Eq. (15) introduces 
into the flow field? We answer this question in the following section. 
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Estimation of the Error in the Discrete Continuity 

To simplify the algebra, we perform the following analysis using the Euler rather 
than the Navier-Stokes equations. So, we drop the viscous terms from Eqs. (9), 
(lo), and (11). This simplification does not alter significantly the generality of our 
results. 

For the sake of convenience, let us introduce the following notations: 

and 

h=r’p+ug+ve. 
ay ay (16b) 

Using the above notations, the pressure equation (9) (or (15)) can be written as 
follows: 

f Y+ 1/2,j -f Y- 1/2,j + h;j+ 112 - h;j- I/2 _ D:i 
Ax AY At ’ 

(17) 

TO express Lk 1/2,j and hi,, + 112 in terms of fi, j and hi,j we use Taylor series expan- 
sion around the points (if l/2, j) and (i, j+ l/2), respectively. 

With reference to Fig. 1, we obtain 

fi*ljZ,j= i(fi+I,j+h,,)+ERX' (184 

hi,j+ l/2 = $(hi,jk 1 +hi,j) + ERY't (18b) 

where ERX and ERY contain the higher order terms of the series. These terms can 
be expressed in terms of the primitive variables u, II, and p using Eqs. (16a) and 
(16b) for f and h. To do so we rewrite Eqs. (18) in the form 

ERX’ = fii l/2,1 -i(fi+I,j+fi,j) (19a) 

ERY’ = h;,j, 1/2 - i(hi,j, 1 + hi,,). (19b) 

By substituting the finite-difference approximations of f and h in Eq. (19), one 
obtains 

ERX’ = Tui, l,,(ui*2,j -2uik 1.1 + ut,,j)/4AX 

f u;,j(ui+ I,j -2ui,j + ut- ,,j)PAx 

+vi,~~u~~~,j+~~ui+~,j-1~ui,j+~+ui,j-~~/8AY 

+ vi* I,j (-“i.,,j+l+ui+,,,~,+ui,j+I-ui,j-1)/8Ax 

T(P,.2.j-3Pi+,,j+3Pi,j-P,.,,,)/4Ax. (20) 
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A similar expression for ERY * can be obtained using the same method. 
As the solution of the system of Eqs. (lo), (1 1 ), and (17) approaches the steady 

state solution, the values of& and h,,j approach zero at all the grid points (i, j). 
Then Eqs. (18) reduce to 

h* If2,j =ERX’ @la) 

hi,j+,,,= ERY’. @lb) 

Upon substitution of Eqs. (21) into Eq. (17) we obtain at steady state the value of 
the dilation 

Di, j = At 
ERX+-ERX-+ERYfERY- 

Ax J AY . 
(22) 

In order to express Di,j in terms of the dependent variables u, v, and p, we incor- 
porate Eq. (20) and the similarly derived equation for ER Y ’ into Eq. (22) 

Di,j = -$ [AX' d.r,,,P+ Ay2 6y.P 

+ Ax2 J,,(u 6,.xu) + AY’ &Av &,u) 

+ cross derivative terms], (23) 

where 

6 lxxxP=(P~+~,~-4P,+~,j+6P~,,-4P;-~,j+P~-~,i)lAX4 Wa) 

and 

6 .v.v>‘.vP= (Pi,j+ 2 -4P,j+ I + 6f’, i - 4f’, I- 1 + Pi,j- 2)/AwV4. G’3b) 

The right-hand side of Eq. (22) is the mass source (error in the discrete con- 
tinuity) which is introduced into the flow field when Eq. (9) is used to compute the 
pressure. Clearly, on a non-staggered grid the discrete continuity is satisfied up to 
a term proportional to the fourth-order spatial derivatives of the pressure and the 
velocity components. We should mention here that the inclusion of the viscous 
terms in our analysis would have only introduced higher order terms in Eq. (22) 
without altering its generality. In any case, the contribution of the viscous terms 
decreases as the Reynolds number increases. 

Equation (22) reveals the following very interesting aspects of the pressure 
Poisson formulation on a non-staggered grid: 

(i) The pressure Poisson method satisfies the discrete continuity equation 
almost to the same accuracy as the artificial compressibility method does. Recall 
that a fourth-order artificial dissipation term is explicitly added to the pseudo-com- 
pressible continuity equation of the artificial compressibility method [4] to stabilize 
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the numerical solution. In the pressure Poisson formulation, the artificial dissipa- 
tion is “implicitly” added to the continuity equation because of the way the pressure 
equation is discretized on a non-staggered grid. 

(ii) Our experience with the pressure Poisson method [6, 1 l] and other 
researchers’ experience with the artificial compressibility method [4] show that the 
dilation can be quite large in regions of the flow field where high pressure gradients 
occur. High pressure gradients result in high values of the fourth-order pressure 
derivatives (artificial dissipation term) and, thus, a significant mass source is 
generated in the continuity equation. Fortunately, the dilation in the Poisson 
formulation is explicitly dependent on the square of the grid spacing and the time 
increment. Therefore, to control the errors in the discrete continuity, we strongly 
recommend the use of fine grid in regions of high pressure gradients. 

In conclusion, careful derivation of the proper discrete pressure equation is very 
important for accurate incompressible flow solutions (see also Ref. [lo] ). 

Direct Derivation of the Discrete Pressure Equation 

The previous discussion suggests that, in order to satisfy the discrete continuity 
equation, the pressure equation should be derived from the following discrete 
approximation of Eq. ( 1): 

(24) 

Using Eqs. (10) and (11) into Eq. (24) we obtain the discrete pressure equation 

pi+2,j-pi,j 

2Ax 

+I 
P 

2Ay [( 

pi,j - pip2,j 
n 

2Ax + rl,- l,, 

pi,j-pi,j-2 
n 

DAY 
+ vi,/. 1 

=$ D;, (254 

or 

P:+2,j-2P;J+P:-2. P;j+,-2P;i$P7.-2 
4Ax2 -J + 

4Ay2 

Wb) 

By inspecting Eq. (25a), we can easily conclude that, at convergence, its left-hand 
side will be driven to zero, since it involves the steady state form of the x- and 
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y-momentum equations at nodes where they are driven to zero. Therefore, Eq. (25) 
will satisfy the discrete continuity equation (24) to machine zero. 

Unfortunately, the discrete pressure equation (25) produces oscillatory solutions 
for the pressure because of odd-even decoupling. This can be clearly seen by 
inspecting the discrete Laplace operator in the left-hand side of Eq. (25) which 
contains either odd or even grid points in the x- or y-direction. Therefore, in two 
dimensions Eq. (25) gives decoupled solutions for the pressure on the odd-odd, 
even-even, odd-even, and even-odd grid points. Each solution is a unique solution 
for the pressure within an arbitrary constant. Interestingly, the odd-odd solution, 
for example, is actually a solution for the pressure equation on a staggered grid 
which is a subset of the original non-staggered grid (see Fig. 2). Similar conclusions 
can be drawn about the other three solutions. 

In conclusion, the use of Eq. (9) to compute the pressure will produce a smooth 
pressure field, but it will not satisfy the discrete continuity equation exactly, while 
the use of Eq. (25) will produce exactly the opposite result. In other words, on a 
non-staggered grid it is not possible to satisfy the discrete continuity to machine 
zero and, at the same time, obtain a smooth pressure field. In general, one has to 
sacrifice partially the satisfaction of the discrete continuity, since a smooth and 
physically meaningful pressure field is desired. This point has been discussed in 
detail by Strikwerda and Nagel [12]. 

Therefore, in order to modify Eq. (25) so that it produces smooth pressure field, 
we must set aside the idea of satisfying the discrete continuity to machine accuracy. 

. . . 

Non-Staggered Grid 

FIG. 2. Equivalence between odd-odd points and staggered grid. 
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More specifically, we seek to satisfy the discrete continuity equation (13) up to a 
fraction of the mass source of Eq. (23), as 

uy; - u”l n+l 

‘2Ax 
1 

’ + 
‘i,j+ 1 - ?I;‘-, 

DAY 

where E is a positive constant (0 < E 6 1). Using the momentum equations (10) and 
(11) in Eq. (26), we obtain the discrete pressure equation, 

P t+2,j-2pt.J +pi-2,j+p~,j+2-2p~,j+pi,j-2 

4AXZ 44 y* 
- i [IAx’ &xx.x.x + AY’ Syyy,vIf’Yj 

where 

~, ,=5i+I,j-5*-I,j+~i,,+l-~i,j-I 

13 I 2Ax 2Ay ’ 

It is important to note that for E = 0, Eq. (27) reduces to Eq. (24) while for E = 1 the 
left-hand side of Eq. (27) reduces to the left-hand side of Eq. (9). Furthermore, both 
Eqs. (27) and (9) produce a smooth pressure field but they fail to satisfy the discrete 
continuity to machine zero. However, the error in the discrete continuity which is 
produced by Eq. (27) is much less than that produced by Eq. (9) because: 

(i) There is no error contribution to the mass source (compare Eqs. (23) and 
(27)) from the source term of the pressure Eq. (27). 

(ii) Numerical experiments show that the odd-even decoupling can be 
removed by using numerical values for E < 1 (see results and discussion section). 

Another advantage that Eq. (27) has over Eq. (9) is associated with the computa- 
tional work (CPU time) required to advance the pressure and velocity fields to the 
new time level. When Eq. (9) is solved for P along with Eqs. (10) and (11) for u and 
u, the 4: and rl terms need to be discretized twice every time step at (i+_ l/2, j+ l/2) 
for the pressure equation and at (if 1, j +_ 1) for the momentum equations. This is 
not the case when Eq. (27) is used, since both the pressure and momentum equa- 
tions require the calculation of the 5 and q terms at the same nodes. Therefore, we 
recommend the use of Eq. (27) in the pressure Poisson formulations on non- 
staggered grids, since it minimizes the error in the discrete continuity (E 4 1) and 
reduces the computational time in the numerical solutions. 

Extension of the method to generalized curvilinear coordinates is straightforward 
with the exception of the source error term in Eq. (27). The error term can be 
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interpreted as the difference between the two finite-difference approximations 
of the laplace operator given in Eqs. (9) and (25b). Therefore, the error term in 
non-rectangular variable grids is the difference between the two finite-difference 
approximations of the transformed laplace operator. 

Boundary Conditions for the Pressure Equation 

Neumann boundary conditions for the pressure Poisson equation are obtained 
using the normal component of the momentum equation along the boundary 
contour. For example, at a boundary x=const: 

ap -= 
ax -+$+~(~+$). (28) 

The boundary condition (28) is applied at one half grid spacing away from the 
boundary for Eq. (9) [S]. In the case of Eq. (25) the boundary condition (28) is 
applied at the boundary using one-sided finite difference approximations for the 
x-derivatives. 

The Compatibility Condition 

The boundary value problem, consisting of the pressure Poisson equation and 
the Neumann boundary conditions, has a unique solution if and only if the integral 
constraint 

(29) 

is satisfied, where n is the outward unit vector normal to the boundary contour S 
enclosing the solution domain A. Equation (9) satisfies identically the compatibility 
condition on a non-staggered grid [S]. We will show that Eq. (25) satisfies the 
integral constraint (29) as well. 

For the sake of convenience we use the notation introduced in Eq. (16a) and 
(16b). Incorporating Eqs. (16) into (27) we obtain 

fi+l,j -f,- l,,+hi,i+ 1 -hi,j-l 
2Ax DAY 

- 5 [AX* d.,,y,, + Ay* Sl,,,] P;,j = 2. (30) 

The discrete form of the integral constraint (29), when applied to Eq. (30) reads 

- f [Ax2 6.x,,, + Ay* &,J P;,, - % = 0, (31) 

SSl/SS/l-15 
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where im and jm are the numbers of the maximum grid points in the x- and 
y-directions, respectively. Equation (31) can be simplified as 

Im~1~~~,,+f;,,i~I.j-f2.j-fi,j+im~1hi,j~+~;,~~~~-hi,2-hi,l 

j=2 2Ax r=2 At 
im - 1 jm 1 

- (32) 

Applying the Neumann boundary conditions at i = 1 and im (jr, j =f;,, j = 0) and 
atj=l andjm (hi,,=h,j~=0)andnotingthatf2,j=f,,~,,j=h,,2=hj,j~_,=Oat 
steady state we can easily see that the first two terms in Eq. (32) vanish identically. 
Finally, the third term in Eq. (32) is also zero, since the ,,continuity” equation is 
locally satisfied at every node. Therefore, Eq. (32) and consequently Eq. (31) are 
identically satisfied on a non-staggered grid. 

RESULTS AND DISCUSSION 

The driven cavity problem is selected here as the model problem to confirm our 
analytical developments. Numerical solutions for the momentum equations (10) 
and (11) are obtained using the Euler explicit scheme and the pressure Poisson 
equation using the successive over-relaxation method. Both forms of the discrete 
pressure equations (9) and (27) are used to investigate their ability to satisfy the 
discrete continuity equation. 

-6&-m ---r -~ I 
0 500 1 do0 1500 

FIG. 3. Convergence of D (E = 0). 
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All calculations are performed on uniform non-staggered grids starting from the 
initial conditions ui,j = xi,,, ui j = yi ,, and Pi,,j = 0. The reason for this choice is 
that we want to explore the capabiliiy of the pressure Poisson method to decay an 
initially high dilation. 

The first numerical experiment is conducted on a (31 x 31) grid using Eq. (27) as 
the discrete pressure equation. The artificial dissipation parameter E is set to zero. 
The time evolution of the logarithm of the average dilation at a node is shown 
in Fig. 3 Clearly the initially high dilation decays to the machine zero (single 
precision) at steady state. As we expected, the computed velocity field is smooth, 
while the pressure field is oscillatory because of odd+ven decoupling. 

To eliminate the decoupling of the pressure nodes, we conducted a second experi- 
ment on the same grid using Eq. (27) with non-zero values of E. Our results indicate 
that values of E as low as 0.1 are sufficient to produce smooth pressure fields. The 
logarithm of the average dilation at a point is shown in Fig. 4 for E = 0.1. In the 
same figure it is also shown the dilation when Eq. (9) is used to compute the 
pressure on the same grid. As can be seen in Fig. 4, Eq. (27) with E = 0.1 decays the 
logarithm of the initial dilation to a steady state value 0.005, while the corre- 
sponding value for Eq. (9) is 0.02. The results confirm our analytical developments, 
since they clearly show that Eq. (9) produces a higher dilation than Eq. (27) with 
0 6 E < 1. We should mention here that the driven cavity problem is a particularly 
difficult case as far as the satisfaction of the discrete continuity is concerned. The 
reason for that is the existence of high pressure gradients near the moving wall and 

1.5 -j 

-2.5 / I I I I I I 
0 250 500 750 1000 1250 1500 

NUMBER OF TIME STEPS 

FIG. 4. Convergence of D on 31 x 31 grid. 
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0 

-1 

-2 

-3 ) I I I I I I 
0 500 1000 1500 2000 2500 3000 

NUMBER OF TIME STEPS 

FIG. 5. Convergence of D on 51 x 51 grid. 

the two singular corners. The rapid spatial variation of the pressure in that region 
results in high values of the dilation (at least an order of magnitude higher than the 
average value). Recall that the steady state value of the dilation depends upon the 
fourth-order derivatives of the pressure. 

A third numerical experiment is conducted on a (51 x 51) grid in order to 
demonstrate the role of the grid refinement on the discrete continuity equation. 
Figure 5 shows the convergence of the dilation for Eq. (27) with E = 0.1 and Eq. (9). 
As expected, Eq. (27) produces a steady state dilation of 0.0024 while the 
corresponding value for Eq. (9) is 0.014. Comparisons of these values with the 
corresponding ones on the (31 x 31) grid confirms the dependence of the dilation on 
the grid spacing, see Eq. (23). 

CONCLUSIONS 

We showed that the discrete solutions of incompressible flows, using the classical 
pressure Poisson formulation on non-staggered grids, do not satisfy the discrete 
continuity to machine accuracy. We also showed that the error in the discrete 
continuity is proportional to the fourth-order derivatives of the pressure, the time 
increment, and the square of the grid spacing. It is interesting to point out that the 
error is proportional to the explicitly added artificial dissipation term in the 
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pseudo-compressibility method. Since the error is dependent upon the time and 
space increments, it is recommended that a line grid, in regions of high pressure 
gradients, be used in order to minimize the errors in the discrete continuity 
equation. 

We derived a modified discrete pressure Poisson equation which satisfies the dis- 
crete continuity equation on non-staggered grids up to a fraction of the dissipation 
term in the classical pressure Poisson formulation. In addition to minimizing the 
error in the discrete continuity, the method also reduces the computational work 
required for the discretization of the pressure equation. 

REFERENCES 

1. A. J. CHORIN, J. Cotnpur. Phys. 2, 12 (1967). 
2. F. H. HARLOW AND J. E. WELCH, Phys. Fluids 8, 2182 (1965). 
3. W. Y. SOH AND S. A. BERGER, Int. J. Numer. Methods I, 733 (1987). 
4. S. E. ROGERS, C. 0. BOULDER, D. KWAK, AND U. KAUL, “On the Accuracy of the Pseudocom- 

pressibility Method in Solving the Incompressible Navier-Stokes Equations,” AIAA 85-1689, AIAA 
18th Fluid Dynamics and Plasmadynamics and Lasers Conference, Cincinnati, Ohio, July 1618, 
1985 (unpublished). 

5. S. ABD‘ALLAH, J. Comput. Phys. 70, 182 (1987). 
6. S. ABDALLAH, J. Comput. Phys. 70, 193 (1987). 
I. W. R. BRILEY, J. Comput. Phys. 14, 8 (1974). 
8. K. N. GHIA, W. L. HANKEY, JR., ANU J. K. HODGE, “ Study of Incompressible Navier-Stokes 

Equations in Primitive Variables Using Implicit Nuemrical Technique,” AIAA 3rd Computational 
Fluid Dynamics Conference, Albuquerque, NM, June 27-28, 1977 (unpublished). 

9. K. N. GHIA, W. L. HANKEY, JR., AND J. K. HODGE, AIAA J. 17, No. 3, 298 (1979). 
10. P. M. GRESHO AND R. L. SANI, Inc. J. Numer. Methods 7, 1111 (1987). 
11. F. SOTIROPOULOS AND S. ABDALLAH, J. Compuf. Phys. 87, 328 (1990). 
12. J. C. STRIKWERDA AND Y. M. NAGEL, J. Compur. Phys. 78, 64 (1988). 


